Tag Archives: crime

Risks of a genetic approach to crime prevention

I have a piece in the Hartford Courant‘s special set of editorials on the Sandy Hook tragedy. The headline-writer missed the point–I am not asking whether genetics could help in understanding and preventing such violence. Of course it can yield at least a partial explanation. My concern is the risk of any prevention program grounded in that genetic understanding. That way leads us toward pre-emptive medication of a class of “future criminals”–a frightening prospect indeed.

426x6001 Risks of a genetic approach to crime prevention

Adam Lanza [photo from The Blaze]

Here’s the piece.

The piece was written two weeks ago. Yesterday, Wayne Carver, the Connecticut Medical Examiner who ordered the genetic analysis, called it a “fishing expedition.” He continued, “but that doesn’t mean you don’t look.” Why doesn’t it? Only because you don’t see the risks as being greater than the benefits, however tiny they may be. My argument is that the risks are greater than we realize.

Criminomics: stopping crime before it starts

Criminomics Bears Fruit: 2037 Murder Rate Lowest Since 1964

 

Dylan looks like any normal six-year-old. He is bright and a little mischievous, has many friends, and is praised by his teachers as a model student. But his normalcy is only skin deep. In his cells lies the DNA of a murderer.

Though Dylan has gene variants that give him a more than 90% chance of premeditated mass murder, he will never commit a crime. Thanks to early intervention by doctors, Dylan’s criminal tendencies were identified before birth. Rather than abort the fetus, however, Dylan’s parents agreed to an intensive program of medication and counseling that will all but ensure that Dylan will lead a happy, normal, peaceful life.

Dylan is one of the success stories of the Criminal Genome Project, or CGP, the effort to sequence the complete set of genes involved in murder and other antisocial behaviors. The controversial science on which this project is based—criminomics—is winning converts, now that the latest crime figures are in. Last year, the annual murder rates in 8 American cities dropped to double digits for the first time since the middle of the twentieth century. In Washington, DC, only 90 people died by gunshot last year, down from 103 in 2036. Experts attribute the drop to criminopathy, a medical and public-health approach to crime based on criminomics. The criminomic method uses high-speed genome sequencing to to identify criminal tendencies at birth and begin treatment early in life. Clinical trials for criminal-gene therapy, which would eliminate antisocial tendencies permanently, are underway and, though preliminary, are showing promising early results. The first criminopathic patients are just hitting their 20s now—and the peace is deafening.

The CGP is run by Dr. Bart O’Day, a criminomicist at the Baler Agricultural and Behavioral University in the Republic of Texas. O’Day wrote the grant proposal that funded the project after a tragic shooting at an elementary school in Connecticut in 2012 in which 20 children and 6 adults were killed by a lone gunman. Thankfully, such a crime has since become unimaginable, thanks to the efforts of O’Day and his colleagues.

“It was an obvious thing to do,” O’Day said. “In the years just before the CGP, we had sequenced the cancer genome, the influenza genome, the pseudome, the schizome, and the retardome. The criminome was just lying in wait for us. So the science was there. All we needed was the motivation.”

In fact, the motivation had been there for 150 years. In the 1870s, the Italian criminologist Cesare Lombroso defined a “criminal type,” characterized by distinctive facial features and, ironically, the excessive use of tattooing, which he used in one of the first systematic attempts to prevent crime by biological methods.[1] About the same time, the Victorian polymath Francis Galton developed “composite photography,” in which he superimposed images of faces as a means of identifying the “criminal type.” “If criminals are found to have certain special types of features, that certain personal peculiarities distinguish those who commit certain classes of crime,” observed Edmund DuCane, one of the leading criminologists of Victorian England, “the tendency to crime is in those persons born or bred in them, and either they are incurable or the tendency can only be checked by taking them in hand at the earliest periods of life.”[2]

With the creation of the science of genetics after the turn of the last century, vaguenesses such as “inborn tendencies” and “heredity” hardened into “genes.” In 1914, the American psychologist Henry H. Goddard wrote, “The criminal is not born; he is made.” Goddard traced criminality to mental retardation, or “feeble-mindedness,” in the term of the day. By compassionately treating feeble-mindedness, Goddard believed one could prevent crime. The feeble-minded type, Goddard wrote, was “misunderstood and mistreated, driven into criminality for which he is well fitted by nature. It is hereditary feeble-mindedness not hereditary criminality that accounts for the conditions.”[3] Goddard believed he had found a single Mendelian gene for feeble-mindedness. By breeding it out of the population, he thought he could eliminate crime, as well as poverty, prostitution, and much illness. Though the feeblemindedness gene has been discredited, Goddard’s belief that crime is a genetic disease rather than a perverse exercise of free will has transformed our criminal justice system.

The decisive step was in reframing crime in terms of public health rather than justice. In the early1990s, the National Institute of Alcohol, Drug Abuse, and Mental Health (today subsumed under the National Institute of Genomics) undertook a massive Violence Initiative based on similar principles. It pursued a public health approach to urban crime, which, proponents recognized, was based on biology (and therefore, ultimately, genes).[4] Uncontroversial at first, liberal opposition to the effort mounted, ultimately leading to the canceling of a scientific conference on genetic factors in crime in 1992.[5] This first Violence Initiative died a rather brutal and noisy death. Yet work on the biological basis of crime continued apace. In 1995, a Danish twin study identified the first crime gene, and more were identified shortly after the turn of the century.

But it was high-speed genome sequencing, combined with sophisticated methods of correlating complex behaviors with DNA sequence, that finally provided the technological breakthrough to stop crime before it starts. After the 2012 school shooting, it took a full year for O’Day’s team to sequence the criminal genome (today it could be done in an afternoon). But in 2014, they published paper describing 112 gene variants that together account for more than 99% of predisposition to murder. The genes were patented and licensed to pharmaceutical companies, and seven new targeted therapies were quickly added to the standard psychiatric armamentarium of anti-depressants and anti-psychotics. The federal Violence Initiative was reinstated in 2015 as the Institute of Crime Prevention (ICM), a branch of the National Institutes of Mental Health.

The first mandatory screening for criminal tendencies was put in place in Washington, DC, in 2018. Other states quickly followed; today, only West Dakota and North Virginia lack screening laws. Convicted murderers were the first to be screened. The ICM then tied crime screening to the back-to-school vaccination requirements for students in secondary and primary schools. Most states now test babies at birth, with blood from the standard heel-stick. Babies born with greater than 50% chance of committing murder have their standard RFID chips, implanted in every child at birth, encoded with the designation “Precrim.”

Individuals identified as precriminal are placed under the care of a criminopathic physician, assigned a health care worker, and given criminal prophylaxis: a treatment regimen tailored to their genetic and environmental circumstances. In all cases, this involves a combination of medications and counseling designed to maintain equanimity, promote sociality, and minimize the risk of triggers, including certain music and video games. Teachers and the parents of friends can discretely scan the child and take steps to minimize conflict and quickly intervene should violence erupt. Most states now prohibit the guardians of precrims from keeping firearms in their homes. NRA members oppose such bans, pointing out that since precrims can be dosed so as to ensure docility with a wide margin of safety, prohibiting guns in precrim homes is overkill.

Combined, these methods have proven remarkably effective. Murder rates began dropping as soon as the programs were put in place, but as the first neonatal precrims hit their teens, rates began to plummet. The rates of other violent crimes have also begun to fall, though somewhat more slowly: rapes are down in most states, as are armed robberies and even grafitti and illegal dumping. Scientists at the CGP explain these results by hypothesizing that many criminal behaviors share a common genetic mechanism, possibly related to emotional intelligence.

For all its success, the program has its opponents. Eugene Galton, a member of the Galton dynasty of scientific criminologists, recognizes the benefits of the criminopathy program but thinks the social costs are too high. “Liberty is too high a price to pay for safety,” he says. “We’re ceding our free will to an iatrocracy—a government by the doctors.”

Such philosophical musings carry little weight with inner-city residents who now sleep more peacefully, without the constant pops of gunfire that once punctuated the night. Dylan’s mother sees safety as the best kind of freedom: “I prefer a war with drugs to a War on Drugs,” she says. “I love my son; I’d rather put chemical bars around his mind than steel ones around his body.”


[2] Galton, “Composite portraits,” 143.

[4] Extrapolating slightly from Breggin, Reclaiming our children, p. 52.

[5] New York Times, Sept. 5, 1992, front page. See also Allen, Garland E. “Modern Biological Determinism: The Violence Initiative, the Human Genome Project, and the New Eugenics.” In The Practice of Human Genetics, 1-23, 1999.

 

Republican Gene Identified

Call it the Biological October Surprise. Last week, just in time to potentially shape the final days of the presidential campaigns, researchers identified a particular form of a gene that is associated with Republican voting patterns. The gene, dubbed Pol-9, showed up in a meta-analysis of Genome Wide Association Studies correlating DNA sequence with exit poll data from the past four presidential elections and six mid-term elections. The findings were published in the October 31 issue of Political Scientism, a leading journal for the geneticization of pretty much everything.

A team from Kashkow University led by Dr. Jeannie Masculator correlated one form of the gene, Pol-9 BolX, with several well-established traits among Republican voters. These included voting against one’s own economic interests, belief in the right to impose one’s values on others, and advocating the rollback of a wide slate of humanitarian and civil rights issues.

The finding comes two years after the discovery of the “liberal gene,” a form of the DRD4 dopamine receptor also correlated with promiscuity, infidelity, and emotionalism.

The Republican Gene seems to be part of an entirely different metabolic and hormonal pathway, but it too has sexual correlates, although they seem to be contradictory. Preliminary findings suggest that Republicans too are predisposed to infidelity but also in this case to polygamy and lack of empathy. Scientists say these findings are still inconclusive and conclude that conclusions therefore are unwarranted, though they warrant further study.

Political strategists were quick to leap on the news. Democratic leaders in charge of the ground game immediately proposed DNA testing as a method of voter identification. Some insiders, who declined to be named for this article, even hinted they might seek to gerrymander certain voting districts by genome sequence. “Republicans have a herd mentality,” our source said. “They tend to live in similar environments.” If these blocs can be split, he said, Democrats have a chance to disarm the “genetic ruling class” that has been coalescing in recent years.

The search for the genetic basis of voting patterns is becoming increasingly mainstream. Social scientists are increasingly turning to genetics to explain complex behaviors, turning away from traditional explanations such as history and economics. “The beauty of the genetic worldview,” according to an editorial in the same issue of Political Scientism, “is that the more we break down the boundaries between genetics and everything else, the more genetic everything else seems.”

Release Mitt Romney’s Genome!

Sociologists say we live in an age of “biological citizenship,” in which our genetic ties are as important as our political ones, and in which communities bound by disease, disability, or allergy can be more close-knit than geographical neighborhoods. In this political season, then, we cannot afford to be ignorant about the biological status of our presidential candidates.

With this in mind, I issue a call for the Romney campaign to release their candidate’s genome sequence. Four years ago, conservatives sought the release of Barack Obama’s birth certificate. Widely perceived by the left as a scam to distract attention from the issues, the tactic nevertheless reflected the right’s alertness to biology as an important factor in fitness for office. They were fighting the wrong battle–the claim was not even 47% true–but genotopia takes the point about biology and politics. We need to know Mr. Romney’s genetic status if he is to be considered for the highest office in the land, that of Tax-Cutter-in-Chief.

As a Mormon, Mr. Romney’s genealogical relationships will surely be thoroughly documented in the Family History Library in Salt Lake City. They will reveal many relevant facts about his biological status. For example, his inbreeding coefficient must, as stipulated by a little-known paragraph in the Republican platform, must be at least 0.75 (where 1.0 means you married your clone). Circumstantial evidence is not sufficient when the stakes are this high—we need to see the data.

Modern genome sequencing can also disclose many genetic conditions that could render one unfit for office:

  • In 2008, both embarrassment and campaign donations could have been spared had John McCain’s predisposition to dementia been identified.
  • A late-onset form of dementia known as Reagan’s disease has been shown to arise in the third year of the Presidential term, in afflicted individuals.
  • Ford’s ataxia, a loss of muscular control in the limbs and neck, leads to lack of coordination and often results in injury, often serious but always comical. Most often seen in former athletes who become politicians, it is inherited as a predisposition that is then made patent through lifestyle choices.
  • Genome-wide association studies have also shown high probabilization of destitution in the grammaticalness thingy of the brain—a condition known as Bushism—that could be devastating for the Decider.
  • Recently, single nucleotide polymorphisms (SNPs, or “snips”) have also been identified that show strong (well, okay, weak—but some, definitely some) correlation with proposed genes for politophobia (morbid fear of government) and aeronautaphasia, the inability to grasp aerodynamics.
  • Multiple Spousal Cadillac Syndrome—once thought relatively benign—has now been decisively linked to the tragic and devastating psychiatric condition hyperpecuniphilia, an obsessive-compulsive disorder that in late stages can lead to the afflicted sitting amid giant piles of cash, running coins through his fingers and crying out, “Mine, ha ha! All mine!”

The only way these and countless other politicogenetic disasters can be decisively avoided is by getting Mr. Romney to step up to the plate and spit into the cup. Indeed, the Romney campaign should be anxious to prove their candidate’s biological fitness. A quick-and-dirty genome profile can be had for a few hundred dollars, and a gold-plated whole genome analysis for a few thousand. We should demand that Mr. Romney produce his entire sequence for public scrutiny and haplotype analysis. Remember: should he win in November, Paul Ryan would be just a SNP away from the Oval Office.

The biology of good and evil

In today’s New York Times, columnist David Brooks writes about the innate capacities for good and evil. Criticizing what he considers the prevailing worldview today, he writes that we believe that nature is fundamentally good, and hence, so we believe, are people. The Hitlers, the Idi Amins of this world are fundamentally warped. “This worldview,” he writes, “gives us an easy conscience, because we don’t have to contemplate the evil in ourselves. But when somebody who seems mostly good does something completely awful”–such as Robert Bales‘s recent massacre of 16 Afghan civilians, including children–”we’re rendered mute or confused.”

Brooks prefers an older view, in which humans are believed to be a mixture of good and evil. Thus, everyone possesses in some measure the capacity for atrocity. We should be concerned and shocked when such actions are committed, but not surprised. So far, I’m with him. I agree about the “easy conscience” that comes with the lack of hard introspection.

But Brooks then makes his argument biological. He cites the University of Texas evolutionary psychologist David Buss in support of his view. Buss studies human behavior such as jealousy, violence, and mating strategies in the context of Darwinism and especially sex differences. He is thus part of a long tradition of psychologists who seek to explain sexual and antisocial behavior in naturalistic terms, stretching back through Edward O. Wilson‘s sociobiology in the 1970s (here is the famous “Chapter 27” from his textbook, which defined the field) and 1980s, to Progressive-era researchers such as the feeblemindedness expert Henry Goddard, the founder of eugenics Francis Galton, and the Italian criminologist Cesare Lombroso. Such work inevitably sparks controversy because it claims that antisocial behavior is innate and therefore genetic.

Genetic determinism is often associated with a conservative and punitive worldview. If violent tendencies are inborn, there is little we can do about them. Those who display them must be locked up, so that the law-abiding can get on with their lives. Genetic determinism tends to ignore the environmental causes of violence, such as poverty and oppression. Historically, it has tended to align with the preference for criminalization over medicalization of antisocial behavior. That, however, may be changing. Perhaps it is possible to “cure” such behavior by tweaking our genes.

In “The Murderer Next Door: Why the Mind is Designed to Kill,” Buss argues that murderous tendencies have been selected for in evolution. By definition, that which can be selected for has not only a basis in our physical bodies, but therefore a basis in our genes. A necessary implication of this view, then, is that there are certain forms of certain genes that predispose us to violence. Buss’s work is the evil twin of works such as Matt Ridley’s The Origins of Virtue. Although the eugenics of the 1910s–1930s is easily mocked for its simplistic biologically determinist analyses of complex behaviors, now we have more complex biologically determinist analyses of complex behaviors. The problems raised by both are essentially the same.

If there are genes for good and evil, then we can find them. Genome-wide association studies are certainly capable of finding correlations between murder and certain passages in our DNA text. I believe they can find correlations between DNA and almost anything. It is only a matter of time before the “genes for” heinous acts such as Bales’s are found.

I believe those genes exist. There is no rational reason to doubt it. The problem is that the finding may well be meaningless. Something like criminal behavior is so complex that it will turn out to be influenced by hundreds if not thousands of genes. Those genes will interact in complex ways, both with each other and with the environment—and those interactions will themselves depend on other genes and other environmental factors. Finding genes associated with violence would be like finding a handful of sand and claiming that a cause of surfing has been discovered. Well yes, but so what?

Historically, finding that violence is “in the genes” has reinforced punitive models of behavior modification. “Innate” has equaled “immutable.” But biomedical research is moving rapidly toward being able to change the genes. In principle, the controlled environment of the laboratory is much more conducive to engineering than the messy world of populations, culture, and economics. Someday, we may wish for a trait to be found to be strongly heritable, for then it will be easy to alter–the way infectious diseases such as tuberculosis, which once were a death sentence, are now in the age of antibiotics easily treatable. In such a world, the ultimate arbiter of social behavior shifts from the justice system to the biomedical system.

Such a biomedical Brave New World would have enormous implications. I don’t see that we have begun to address the consequences of such a shift.