Tag Archives: hype

23andMe, myself, and I

Here is the new ad from 23andMe that will begin airing shortly on cable TV*:

Genomics is going mainstream and the best news is first that it’s real simple and second that it’s all about me.

Let’s take the most obvious first: the “me” meme. Of course this relates to the company name, but the ad takes me to a new level. It makes “you” your DNA. I give them points for a couple of qualifiers — it “helps” make me who I am, one character says. But the overall message is that you are your genes.

It also exploits the meme of egocentrism. Nearly everything today seems to be all about me. Memoirs are the hottest genre of nonfiction. We have a magazine called “Self.” One of the most common themes on commercial websites is to have a “My [company name]” area, which usually just means they have your personal information to use to sell you more stuff. There’s even a “.me” internet domain, which they advertise “is all about you.” Who isn’t curious about himself? I’m the most interesting topic in the world! And 23andMe will tell me about my true inner nature for just $99.

One element of personalized medicine, then, is narcissism. Another, more noble, element is individuality. No one is more committed to his individuality than I am—but I’m also wary of its dark side: selfishness. I am struck by the single reference to future generations (“what I will pass on to my kids”). Again, this is a two-sided coin. In the Progressive era, the literature on genetic medicine emphasized family and community. There isn’t a hint of that here. On the one hand, then, the ad is free of the eugenic message of controlling human evolution. On the other, it’s relentlessly selfish. Most likely, the reason for staying away from issues such as family, community, and responsibility is that it enables them to steer way wide of abortion. This ad is about me, not my kids and not the future. That’s actually a new and rather radical development in genetics. 

A persistent theme in popular literature from the 19th century to the 21st, is that hereditary information provides certainty. This despite the fact that one of the signal insights from genomics is how uncertain its results are. Genetic medicine today is all about probabilities, and to make informed decisions based on our genetics we have to understand how probability works. The ad works against this principle, promising certainty where there is only chance. “Now, I know” says one woman. No, you don’t. Now, you have a sense of risk—not certainty. This is a dangerous over-simplification.

double helix

Simplified double helix from Watson and Crick’s 1953 paper.

This sense of simplicity is also carried in the graphics. Note how there’s hardly a double helix in it. “Your” DNA is reduced to circles, dots, and lines. They move and whirl entertainingly and there’s just enough suggestion of complexity to carry the message that you can’t understand “you” without them‚ 23andMe. If DNA becomes as central to identity as companies such as 23andMe want to make it, this ad suggests that its iconic image may fade. Even the stripped-down ribbons and bars version is simply too complex for TV.

karyotypedowns

An early karyogram (of Down syndrome) from the 1960s.

A comprehensive chromosome map from UCSF.

Screen shot from 23andMe commercial. Her “DNA” is those two colorful cylinders by her ear.

Most of the genetic “knowledge” promised is simple enough to be carried in the one- and two-syllable words that dominate mass-market media. Genetic medicine, stuffed as it is with Latinate and Greek words, is a tough sell in that market, but the ad pulls it off. At 0:21 we hear the longest word in the ad: “hemochromatosis.” The speaker pauses after the second syllable, to suggest empathy with viewers who get hung up on such terms. According to the Mayo Clinic website, hemochromatosis is indeed usually inherited, is rarely serious, is most common in men, and is the most common genetic disease in Caucasians. The ad script gives this word to a black man. Thus, one of the ad’s subtle messages is to erase racial differences—even differences supported by scientific evidence. It’s a commonplace in TV ads nowadays to feature men and women of many hues, but the 23andMe ad takes it a step further.

Another theme of the commercial is the way it suggests communities based around biological identities of health and disease. Once, our primary identities were with those who lived near us, or shared our work or hobbies or politics. But politics has become personal, our communities are digital, and our identities center around health. The sociologist Nikolas Rose calls this “biological citizenship.” The 23andMe website features forums where members who share particular mutations or risks can discuss diets, lifestyle habits, child-bearing decisions–or their pets, if they wish. They are communities based around health. The ad sends the message that race, class, and gender are no longer our defining social themes: what matters now is health and disability.

We hear so much about the importance of educating the public about their biology as a key component of contemporary personalized medicine, but in this ad that biology is reduced to bumper-sticker-like phrases about this circle “saying” I will have blue eyes and that line segment “saying” I have a risk of this or that disease. Learning about me will be fun, easy, and inexpensive. Thank goodness I can mail off a C-note, spit in a cup, and in a few weeks get a report that simplifies it all in language I can understand. The ad ends with a rainbow of people chanting “Me. Me. Me.” It’s the “Om” of the 21st century.

 

*h/t to Bob Resta for sending the link to the ad, and to Shirley Wu (@shwu) for a tweet that showed me that the hemochromatosis passage was too terse in yesterday’s version. I’d been wanting to add something about biological citizenship and Shirley’s comment suggested a way to do it.

 

 

 

The gene for hubris


A recent post by Jon Entine on the Forbes website leads with a complimentary citation of my book– and then goes on to undermine its central thesis. He concludes:

Modern eugenic aspirations are not about the draconian top-down measures promoted by the Nazis and their ilk. Instead of being driven by a desire to “improve” the species, new eugenics is driven by our personal desire to be as healthy, intelligent and fit as possible—and for the opportunity of our children to be so as well. And that’s not something that should be dismissed lightly.

Well, first of all, as the recent revelations of coerced sterilization of prisoners in California shows, “draconian, top-down” measures do still occur. Genetics and reproduction are intensely potent, and wherever we find abuse of power we should be alert to the harnessing of biology in the service of tyranny.

Second, there’s more than one kind of tyranny. Besides the tyranny of an absolute ruler, perhaps the two most potent and relevant here are the tyranny of the commons and the tyranny of the marketplace. The fact that they are more subtle makes them in some ways more dangerous. The healthcare industry does much good in the world, but it is naive to treat it as wholly benign.

Further, putting human evolution in the hands of humans, means accepting long-term consequences for short-term goals. The traits we value–health, intelligence, beauty–are the result of the action of many genes interacting with each other and with a dynamic environment. The entire system is contingent, inherently unpredictable. Yet we treat it as simple and deterministic. Until now, technology has been the major obstacle to guiding human evolution. It may be that now the major obstacle is our reasoning ability, our capacity for grasping contingency and probability and change. We’re tinkering with the machinery of a system whose complexity is still unfolding before us. The probability of unforeseen consequences is 100%. The only question is how severe they will be. We will only know in retrospect.

If we now have the tools to meaningfully guide our own evolution–as eugenicists have always wanted to do–we cannot take a blithe and Panglossian attitude. We have to be alert to the risks and take them seriously. That is not traditionally science’s strong suit. The public face of science is sunny, optimistic, fun. It strides boldly into the future, laughing and making striking promises. The industries behind science and health are wealthy and politically powerful. Not everything they do is benign.

To be a critic of that public-relations machine–of hype, in other words–is not to be a critic of health or knowledge or progress. Genetic science has the potential to bring us enormous benefits in health and well-being, and as they do, I stand in line with my fellow humans for my fair share. But that science also carries huge and unforeseeable risks, the root of which, perhaps, is arrogance. It’s one whose consequences are painfully evident in the historical record.

 

Major new cause of achievement discovered: studying

In a breakthrough discovery, researchers have identified a significant causal factor in educational achievement. It involves sitting one’s ass down at a table and opening books.

The problem of the underlying causes of educational achievement have stymied geneticists for years. Back in the Progressive Era, eugenicists attributed most of the variance in IQ, or intelligence quotient–a test designed to measure educational achievement–to a single Mendelian gene. Today, geneticists are just as obsessed with the genetic causes of IQ. After years of study, they have succeeded in spreading the effect out over several genes, while whittling the genetic basis down to under two percent of the variation. A recent study in Science magazine found that all known genetic variations combined explained 1.98% of the variation in achievement; the largest single effect of a genetic variant was 0.02%.

A different approach was taken by a researcher who prefers to be known simply as “Miss Perkins.” With her half-moon glasses, her hair done up in a tidy bun, and her sensible shoes, she is the picture of an elementary school teacher. Which she is. Collecting data over more than 20 years of teaching social studies to 3rd, 4th, and 5th graders at Martin Luther Malcolm Kennedy Roosevelt Elementary and Middle School, in Slippery Rock, Missouri, she has found that studying (STUH-dee-ying) explains a whopping 60% of the variance in educational achievement–no matter whether it is measured in grade-point average, standardized test scores, or subjective evaluations.

Another 30% of the total variation can be attributed to parents teaching their kids to put their butts in the chair and keep them there, without videos, music, or cell phones to distract them. A further 8% was attributed to nutrition.

The results have rocked the biomedical world. “I’m literally stunned,” said Dick Dorkins, of the Society for the Prevention of Intelligent design, Teleology, Or Other Nonsense (SPITOON), a biological think tank in Tumwater, Washington. “I feel exactly like I did last week when I accidentally got TASERED at the end of a bar fight.”

Not all scientists are convinced by the results, which involve 573 children and 1,719,000,000,000 base pairs. Nicholas Spork, a genomicist at Kashkow University, best known for its discovery of the “Republican gene,” said that Perkins’s “one-size fits all” approach was a “pedagogical dinosaur.” He was pioneering a personalized education approach, he said, that would tailor standardized tests to an individual’s genome. He also said he had applied for a federal grant to buy fourteen new high-speed sequencers that would identify 2 trillion base pairs in 93 seconds. “It’s just a hunch of course,” Spork said with a conspiratorial wink, “but I have every confidence that, with enough venture capital, in ten years we can double the amount of variance explained by single-nucleotide polymorphisms” (or “snips”). That would bring the total to around 3 percent.

Meanwhile, Miss Perkins continues her study—and her students continue their studying. She teaches about 60 students a year, in two classes. Her most high-tech tools are a globe, in the corner, a whiteboard (without a projector), and a terrific set of dry-erase markers, ranging from deepest violet through the spectrum to cherry red. But that’s not all. “Over the summer, a parent donated me a set of grays and blacks,” she said proudly during a quiet moment in class. “They were expensive, but oh, this will help a great deal. Nothing’s too good for my kids. Derek! What do you think you’re doing? Sit down and be quiet this instant, or you’ll have extra homework!”

News of genes for: the latest examples—and further reflections on why we persist in believing in them

There is a basic contradiction in the lay response to genome news. Somehow, the more we learn about how complex and nuanced gene action is, the more we seem drawn to “gene-for” explanations. Collectively, we know that genes do not directly determine or control traits, let alone behaviors. And we know that single genes do not produce complex traits, except (maybe) in a few extreme and rare circumstances. There are no genes for; and yet we keep talking about them—possibly more than ever. Why is that?

Individual cases, drawn from current events, both demonstrate my premise and give us some leverage for prying apart the halves of this paradox.

So let’s roll up our sleeves and get started.

 

I stink, therefore I scam

One of the less appetizing findings of genetics is that if you can’t roll your earwax up into a nice, satisfying ball, your gym buddies in all likelihood choose lockers disconcertingly far from yours. The gene ABCC11 codes for a protein that is involved in the consistency of earwax—and that is apparently quite nutritious to the bacteria that produce body odor. There is, in short, a “key gene” that is “basically the single determinant of whether you produce underarm odor or not,” said Ian Day, a co-author of a new study on the behavior genetics of raunchy pits.

All this has been known for some time. A new paper, by Day and colleagues and published in the Journal of Investigative Dermatology, found that many people who lack “the underarm odor gene” nevertheless still wear deodorant.

One the one hand, this shows that genetics often makes very little difference in our lives. I haven’t confirmed the result with my own nose, but accepting for the moment that ABCC11 does in fact code a protein largely responsible for body odor, apparently few people are paying much attention to it. More important than whether we are actually olfactorily offensive, seemingly, is the marketing ploy that presents human beings as innately stinky creatures, who, in order to be socially successful, need to neutralize our natural stench with perfumes and deodorants. We deodorize independently of the presence of body odor.

On the other hand, then, although we are not slaves to our genes, this study suggests that we are slaves to our culture. Cultural norms and values often shape our behavior more than biological “reality.”

Nor surprisingly, the allele frequency for dry earwax/odorless axilla (the anatomical term for armpit; the middle-schoolers in your life will be thrilled to know this term) varies geographically: 98% of people of European ancestry are wet and stinky, while essentially all Koreans and most Asians generally are dry and odorless. In a nice double-header of genetic determinism plus medical Eurocentrism, Medical News Today bowdlerized the story as, “Two percent of people have armpits that never smell.” Of course, other things besides ABCC11 can make you smell bad. Given sufficient antipathy to bathing and/or doing laundry, anyone’s armpits (and everything else) will begin to reek. And it takes a remarkably blinkered perspective these days to report this result as two percent of people—to neglect the roughly 4/7 of the world population that is Asian. The whole thing makes me break out in a cold sweat.

 

Anthill Anarchy

Two more papers made claims that were more than skin-deep. A paper in Nature, not on humans but on fire ants, suggests the existence of a “social chromosome.”  A string of 616 genes was identified that correlates with the type of social system an individual ant will accept: either a single-queen system or a multi-queen system.

If all the workers in a colony carry the B variant only, they will accept a single queen that also carries only the B variant (marked as BB, because the chromosomes come in pairs). But if some workers in the colony carry the b version of the chromosome, the colony will accept multiple queens — but only those queens with a mismatched “Bb” set of chromosomes. From the Roman Empire to Occupy Wall St., with the flip of a switch.

In the 1960s, during the first flowering of human cytogenetics, the finding that a disproportionate number of inmates in a British hospital for the violently insane carried an extra Y chromosome led to the idea of the “criminal chromosome.” So-called XYY males were branded as potential criminals. These unfortunates, it was speculated, were predisposed to violent crime as a result of having an extra dose of maleness, with its attendant propensities toward aggression and lack of empathy. Several serial killers were labeled as XYY (incorrectly, in most cases) and the “my genes made me do it” defense was attempted in court, though never successfully. The XYY controversy made headlines through the late 1960s and early 1970s, particularly when the science-activism group Science for the People got hold of a Harvard study intended to interrogate this and other claims about the effect of extra sex chromosomes on behavior. The controversy died when the research arm of the Harvard study was suspended. Thus ended this particularly primitive version of the fantasy of preventing violent crime by identifying it before it starts by aborting affected fetuses (bg essay). More sophisticated versions would involve large complexes of genes and subtler therapies; medication, say, and counseling, perhaps lifelong.[1]

The implications of the ant study also lie in the area of behavior control, though the present work limits its conclusions to entomology. “Our discovery could help in developing novel pest-control strategies,” said paper co-author Yannick Wurm (I know, I know) of the University of London. For example, a pesticide could artificially deactivate the genes in the social chromosome and induce social anarchy within the colony.” What could possibly go wrong?

 

Gene for humanity

Another new study identified microRNAs–short strings of nucleic acid that regulate gene expression–that are found in human brains and (so far) only in human brains. The blog Why Evolution is True delivers a sober account of the finding: “We have a human-specific molecule, miR-941, that regulates gene expression in our brains, and some of the genes it might have regulated have dropped out of the pathway.”

This modest but interesting finding has been overblown in the media to a “gene for humanity,” says whyevolutionistrue. The term “holy grail” really should be used only in conjunction with killer bunnies but the phrase’s mytho-comic connotations are apt here, I think. How thrilling (and frightening) to think there might be a single gene that holds the key to separating us from the apes! Could a single wayward x-ray to the groin lead to a Cro Magnon blessed arrival, fruit of the loins of a middle-class mom from Dubuque? Could we, by means of genetic engineering and maternal surrogacy, resurrect an extinct humanoid species such as, say, a Neandertal?

 

Search for the root causes of the search for root causes

As always, there are two distinct but connected forces at play in these stories. Gene-for hype occurs on at least two levels. First is the scientific fascination with seeking the hereditary component of anything. The laudable emphasis today on multi-gene complexes and gene-environment interaction has done little to dampen our enthusiasm for seeking the genetic “roots” or “basis” of natural behaviors. The reasons for this are complex, but at least part of the explanation is inherent in the science. Quite simply, environmental influences are hard to analyze using existing scientific methods. So the cutting edge of behavioral research brackets the environment and asks questions that are answerable (and of course fundable). This de facto determinism is built into the style of scientific practice: what counts as interesting is shaped by what is convenient to study.

Second, as scientific results filter outward from the lab to the media outlets and blogs to the public eyeball, the natural and necessary distillation of complex, nuanced findings into plain, sixth-grade-level language easily becomes perverted. How many hits would you get by writing, “Genes regulated by human-specific molecule may have dropped out of cascade pathway thousands of generations ago”? Perhaps the more relevant human-specific trait here is the desire for simple explanations and sensational stories about root causes and “the key” to whatever.

It is tempting to write that this impulse for ultimate causation explains everything about genetic determinism. But that would create more problems than it solves.


[1] Court Brown, W. M. “Sex Chromosomes and the Law.” The Lancet 280, no. 7254 (1962 1962): 508-09; Maclean, N., J. M. Mitchell, D. G. Harnden, Jane Williams, Patricia A. Jacobs, Karin A. Buckton, A. G. Baikie, et al. “A Survey of Sex-Chromosome Abnormalities among 4514 Mental Defectives.” The Lancet 279, no. 7224 (1962 1962): 293-96; Jacobs, Patricia A., M. Brunton, M. M. Melville, R. P. Brittain, and W. F. McClemont. “Aggressive Behavior, Mental Subnormality and the XYY Male.” Nature 208 (1965 1965): 1351-52. doi:10.1038/2081351a0.

Walzer, S., and P. S. Gerald. “Social Class and Frequency of XYY and XXY.” Science 190, no. 4220 (1975 1975): 1228-9; Steinfels, M. O., and C. Levine. “The XYY Controversy: Researching Violence and Genetics.” Hastings Cent Rep 10, no. 4 (1980 1980): Suppl-1-32.